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MHD Stagnation Point Flow with Suction Towards a 
Shrinking Sheet

(Aliran Titik Genangan MHD dengan Sedutan terhadap Kepingan yang Mengecut)

LOK YIAN YIAN*, ANUAR ISHAK & IOAN POP

ABSTRACT

A steady two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of a viscous and electrically conducting 
fluid over a permeable shrinking sheet has been studied. The governing partial differential equations are reduced to the 
nonlinear ordinary differential equations by a similarity transformation. The resulting differential equations are then 
solved numerically using an implicit finite difference method. It is found that the solutions are non-unique for weak 
magnetic field, strong suction and large velocity ratio between free stream velocity and wall shrinking velocity.
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ABSTRAK

Aliran titik genangan dua matra mantap magnetohidrodinamik (MHD) terhadap kepingan meregang telah dikaji. Persaman 
pembezaan separa menakluk diturunkan kepada persamaan pembezaan biasa tak linear dengan menggunakan penjelmaan 
keserupaan. Persamaan pembezaan biasa yang terhasil itu kemudiannya diselesaikan secara berangka menggunakan 
kaedah beza terhingga tersirat. Didapati bahawa penyelesaian adalah tidak unik untuk medan magnet yang lemah, sedutan 
yang kuat dan nisbah halaju yang besar antara halaju aliran bebas dengan halaju pengecutan dinding kepingan. 

Kata kunci: Lapisan mengecut; MHD; sedutan; titik genangan

INTRODUCTION

A class of flow problems with obvious relevance to 
numerous applications in industrial manufacturing 
processes is the flow induced by the stretching motion of a 
flat elastic sheet. Such flow situations are encountered, for 
example, in aerodynamic extrusion of plastic and rubber 
sheets, melt-spinning, hot rolling, wire drawing, glass-fiber 
production, polymer sheets, cooling of a large metallic 
plate in a bath which may be an electrolyte, etc. During its 
manufacturing process, a stretched sheet interacts with the 
ambient fluid both thermally and mechanically. The study 
of heat transfer and flow field is necessary for determining 
the quality of the final products of such processes as 
explained by Karwe and Jaluria (1988, 1991). Crane (1970) 
was the first who studied the steady two-dimensional 
incompressible boundary layer flow of a Newtonian fluid 
caused by the stretching of an elastic flat sheet which 
moves in its own plane with a velocity varying linearly 
with the distance from a fixed point due to the application 
of a uniform stress. This problem is particularly interesting 
since an exact closed form solution of the two-dimensional 
Navier-Stokes equations has been obtained. The stability of 
such flow was shown by Bhattacharyya and Gupta (1985). 
The uniqueness of the flow has been proved independently 
by McLeod and Rajagopal (1987), and Troy et al. (1987). 
After this pioneering work, the flow field over a stretching 
surface has drawn considerable attention and a good 

amount of literature has been generated on this problem 
(Abraham & Sparrow 2005; Magyari & Keller 2000, 
Sparrow & Abraham 2005, Wang 1984). A new solution 
branch for both impermeable and permeable stretching 
sheets was found by Liao (2007) and Tan et al. (2008), 
which indicates that multiple solutions for the stretching 
surfaces are possible under certain conditions.
 In recent years, some interest has been given to 
investigate the flow over a shrinking sheet, where the sheet 
is stretched toward a slot and it would cause a velocity away 
from the sheet. A pioneering paper on this problem has 
been published by Miklavčič and Wang (2006). From the 
physical grounds vorticity (rotation or non-potential) flow 
over the shrinking sheet is not confined within a boundary 
layer, and the flow is unlikely to exist unless adequate 
suction on the boundary is imposed (Miklavčič & Wang 
2006). Fang et al. (2009) extended the problem to unsteady 
case while Fang and Zhang (2010) obtained an analytical 
solution for the thermal boundary layers with suction over 
shrinking sheet. The shrinking sheet problem has also 
been extended to micropolar fluid (Ishak et al. 2010) as 
well as magnetohydrodynamic fluid (Fang & Zhang 2009, 
Noor & Hashim 2009; Noor et al. 2010; Sajid et al. 2008; 
Sajid & Hayat 2009). Besides the imposition of suction, 
an added stagnation flow (which contain the vorticity) 
towards a shrinking sheet make the solution for such fluids 
to be existed. This idea is first published by Wang (2008) 
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0  and c ≥ 0. Thus, we look for a solution of equations 
(1)-(3) of the following form:

y = (aν)1/2 xf (η), θ(η) = (T–T
∞
)/(Tw–T

∞
), η = (a/ν)1/2 y,

 (5)

where y is the stream function defined in the usual way as 
u = ∂y/∂y and v = -∂ψ/∂x. Thus, we have:
 
 u = a x f' (η), ν = -(aν)1/2 f (η), (6)

where primes denote differentiation with respect to η. 
Therefore, νw(x) is given by:

 νw(x) = -(aν)1/2 s, (7)

where s = f (0) is the constant mass flux with s > 0  for 
suction and s < 0 for injection. Substituting variables (5)-
(7) into equations (2) to (4), we get the following ordinary 
differential equations:

 f"' + ff" – f' 2 + 1 + M(1 – f ' ) = 0, (8)
    
 θ" + f θ' – nf' θ = 0, (9)

subject to the boundary conditions 

 f (0) = s,  f' (0) = -ε,  θ(0) = 1

 f' (η)→1,  θ(η)→0   as  η→∞. (10)

 Here ε = c/a is the velocity ratio parameter,  Pr = v/α 
is the Prandtl number and  M = σ /(ρa)is the magnetic 
parameter.
 The physical quantities of principal interest are the 
skin friction coefficient Cf 

and the local Nusselt number  
Nux, which are defined as:

 Cf =  (11)

where τw = μ(∂u/∂y)y = 0 is the wall shear stress, hx = 
qw/(Tw–T

∞
) is the local heat transfer coefficient, qw = 

-k(∂T/∂y)y = 0 is the local heat flux, µ is the dynamic 
viscosity and k is the thermal conductivity. It is easily 
shown that the skin friction coefficient Cf and the local 
Nusselt number Nux in (11) are given by:

  (12)

where Rex = uw(x)x/ν is the local Reynolds number.

NUMERICAL METHOD

The ordinary differential equations (8)-(9) subject to the 
boundary conditions (10) have been solved numerically 
using the Keller-box method for some values of the 
governing parameters, i.e. magnetic parameter M, suction 

ν

who found that solutions do not exist for large shrinking 
rates and may be non-unique in the two-dimensional case. 
Recently, Lok et al. (2011) extended Wang’s problem to 
MHD flow where dual solutions exist for small values of 
magnetic parameter.
 The objective of the present study is to analyze the 
development of the steady boundary layer flow and heat 
transfer in two-dimensional stagnation-point flow of an 
incompressible electrically conducting fluid with suction 
over a shrinking sheet in the presence of a uniform magnetic 
field. Only the case when the wall temperature varies with 
the distance along the sheet is considered. In the previous 
studies, many authors have considered the effect of suction 
or stagnation flow independently, but nobody has worked 
on the combination effect of both suction and stagnation 
flow towards a shrinking sheet. It has to be mentioned here 
that the two-dimensional MHD boundary layer flow in the 
region of the stagnation-point on a stretching flat sheet has 
been investigated by several authors, such as Ding and 
Zhang (2009), Ishak et al. (2009), Mahapatra and Gupta 
(2001) and the references cited therein. Therefore, to the 
best of our knowledge, the results of this paper are new 
and they have not been published before.

BASIC EQUATIONS

Consider a steady, two-dimensional flow and heat transfer 
of an incompressible electrically conducting fluid near 
the stagnation point on a heated shrinking sheet in the 
presence of a free stream ue(x) and uniform ambient 
temperature T

∞
. The wall shrinking sheet velocity is uw(x), 

the mass flux velocity is vw(x) and the wall temperature is 
Tw(x), which will be defined later. The x– axis runs along 
the shrinking surface in the direction of motion and the 
y– axis is perpendicular to it. A uniform magnetic field of 
strength B0  is applied in the positive direction of y– axis. 
The magnetic Reynolds number is assumed to be small, 
thus the induced magnetic field is negligible. Under these 
assumptions, the simplified two-dimensional boundary 
layer equations governing the flow and heat transfer are 
(Ding & Zhang 2009; Ishak et al. 2009):

    , (1)

     (2)

  , (3)

while the boundary conditions are:

 v = vw(x),  u = uw(x),  T = Tw(x)  at  y = 0

 u → ue(x),  T → T
∞
  as  y → ∞. (4)

 We assume that ue(x) = ax, Tw(x) = T
∞ + bxn and uw(x) 

= -cx where a, b, c and n are constants with a > 0, b > 

ν
ρ
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parameter s and velocity ratio parameter ε. The Keller-
box method involves four steps. First, the ordinary 
differential equations are reduced to a system of first 
order ordinary differential equations. Next, the resulting 
system of equations is expressed in the form of a finite 
difference using central differences. Then, the equations 
are linearized using Newton’s method before putting them 
in a matrix-vector form. Finally, the resulting linear system 
of equations is solved along with their boundary conditions 
by the block-tridiagonal-elimination method. The details 
procedure of this method can be found in Cebeci and 
Bradshaw (1988) and Cebeci (2002). 
 In this paper, a step size of 0.0005 were used and 
the convergence criterion was set to 5×10-7, which give 
accuracy to six decimal places. For some values of M, as 
s or ε increases, multiple solutions were obtained when 
considering different values of boundary layer thickness, 
η

∞
. These values of η

∞ 
are not fixed, but depend on the 

values of the governing parameters that considered. For 

the first solution, the boundary layer thickness η
∞
, ranges 

between 3 and 6 while for the second solution, the η
∞  

was 
taken from 8 to 25. It was found that the third solution is 
possible for quite large values of η

∞
 (>50).

RESULTS AND DISCUSSION

Table 1 shows the comparison of the initial values f" (0) 
with those obtained by Wang (2008) and Kimiaeifar et al. 
(2009) for the case when the magnetic field is absent (M 
= 0) and no effect of suction or injection exist (s = 0). It 
is found that the results are in very good agreement. For 
the sake of brevity, the following results of this paper are 
limited to a fixed value of Pr = 0.7 (air) and n = 1 (linearly 
increasing wall temperature). We expect that the results 
are qualitatively similar for other values of Pr and n of 
the same order.
 Figures 1 and 2 show the solution regions for the 
skin friction coefficient f" (0)and the local Nusselt 

TABLE 1. Comparison of initial values f" (0) when M = s = 0 and some values of ε

Wang (2008) Kimiaeifar et al. (2009) Present method

ε Integration & 
shooting method

Homotopy analysis 
method, 20th-order

4th-order Runge-Kutta 
method

Keller-box method

0.25
0.5
0.75

1
1.15

1.2465

1.40224
1.49567
1.48930
1.32882

0
1.08223
0.116702
0.55430

1.402254441
1.495670686
1.489335189
1.32888085

1.40224078
1.495671
1.48933
1.328824

1.402241
1.495670
1.489298
1.328817

0
1.082236
0.116702
0.554295

FIGURE 1. Variation of the skin friction coefficient with the suction parameter s for ε = 1 
and different values of M
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number -θ' (0) as a function of the suction parameter s for 
different values of the magnetic parameter M and when ε 
= 1. It was found that multiple solutions exist beyond the 
critical value (turning point) sc for both the skin friction 
coefficient and the local Nusselt number. Large imposition 
of suction is required so that multiple solutions are possible 
for flow with large magnetic parameter. It is found that 
sc = 2.058, 2.745, 3.286, 3.909, 4.332 for M = 0.2, 0.5, 
0.8, 1.2, 1.5, respectively. In reality, between these two 
solutions, only one of them is stable while the other is not. 
The first solution (solid line) is assumed to be physically 
stable, because its solution is the continuation of the case 
of injection (s < 0). The second (dot line) and the third 
solutions (dash line) have negative values of the skin 
friction coefficient. These solutions show the occurrence 
of flow separation and reversed flow, which caused the 
difficulties in the numerical computation. It should be 
mentioned that Merkin (1985), Weidman et al. (2006), 
Paullet and Weidman (2007) and Harris et al. (2009) have 
presented the mathematical proof of the conjecture of 
dual numerical solutions. They have performed a stability 
analysis and revealed that the solutions along the upper 
branch (first solutions) are linearly stable, whilst those on 
the lower branch (second solutions) are linearly unstable. 
Besides, from the first (stable) solution in Figure 1, it is 
observed that f" (0) increases with magnetic parameter M. 
This is due to the fact that application of a magnetic field 
to an electrically conducting fluid produces a drag-like 
force called Lorentz force. Therefore, Lorentz force will 
be enhanced by increasing M, which imparts additional 
momentum into the boundary layer (Takhar et al. 2001, 
Mahmoud 2007). From Figure 2, the first (stable) solution 

of the local Nusselt number increases with M, showing 
that the heat transfer rate increases in the presence of a 
magnetic field.
 Figure 3 represents the velocity f' (η), while Figure 
4 shows the temperature θ(η) profiles for some values 
of the suction parameter s and for fixed values of the 
parameters (M = 0.5, ε = 1, n = 1 and Pr = 0.7). The first 
and second solutions for large values of s (s = 3 and 5) 
are plotted in these figures as it has been done in Figures 
1 and 2 for the skin friction coefficient and the local 
Nusselt number. The third solution is not shown here as 
its boundary layer thickness is too large (η

∞
 > 50). From 

Figure 3, it is found that the velocity profile increases as 
s increases. This is because suction implies an increase in 
skin friction coefficient (see Figure 1) which caused by the 
reduction of momentum boundary layer thickness; hence 
enhance the flow near the surface of the wall. However, the 
temperature in Figure 4 decreases as s increases because 
of the increment of thermal boundary layer thickness. It 
is also observed that the boundary layer thickness for the 
second solution is greater than the boundary layer thickness 
for the first solution. The temperature profiles in Figure 4 
for the second solution (dot line) show that negative values 
are observed near the wall, which represent a physically 
unrealistic case and should not be happened in reality. This 
is the reason that we postulate the first solution is physically 
stable and occur in practice, whilst other solutions are 
physically not realizable in practice. Further, Figures 5 
and 6 investigate the effect of the velocity ratio parameter 
ε on the velocity f ' (η) and temperature θ(η) profiles. By 
taking fixed suction parameter (s = 3), it is found that 
multiple solutions exist when ε > 1/2. It is observed that 

FIGURE 2. Variation of the local Nusselt number with the suction parameter s 
for n = 1, ε = 1, Pr = 0.7 and different values of M
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for the first solution, the velocity profile increases from its 
initial value, which is also the minimum value, and then 
increases to the value of unity. On the hand, for the second 
solution, the velocity profiles have a negative gradient near 
the surface of the sheet and then these profiles gradually 
increase with positive gradient until they reach the far field 
boundary conditions asymptotically. 
 It is interesting to see how the streamlines look like 
for multiple solutions. Thus, the streamlines from (5) for 

M = 0.5, ε = 1 and s = 3 are shown in Figure 7. Figure 7(a) 
represents the streamlines for the first solution, where the 
pattern is almost similar to the normal stagnation point 
flow but because of the existence of suction and shrinking 
effect, the flow is sucked into the permeable wall. The 
streamlines for the second solution are shown in Figure 
7(b). It is found that there exist two horizontal dividing 
streamlines which separate the flow into three regions. 
In the upper part, the oncoming flows pass on either side, 

η

f '
 (η

)

FIGURE 3. Velocity profile for M = 0.5, ε = 1 and different values of s

η

θ 
(η

)

FIGURE 4. Temperature profile for M = 0.5, ε = 1, n = 1, Pr =0.7 
and different values of s
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where the pattern is similar to that of stagnation-point flow. 
In the second region, reverse rotating (non-potential) flow 
is formed while in the lowest region, the flows behave like 
it is dragged to the stagnation point due to shrinking sheet 
effect. The region of the reverse rotating (non-potential) 
flow is consistent with the observation of negative velocity 
gradient in Figure 5. Since we postulate that only the first 
solution is stable, the streamlines for such case is more 
simple and controllable. 

CONCLUSION

In this paper, the steady MHD stagnation point flow due 
to a shrinking sheet has been theoretically considered. 
The effects of suction parameter, magnetic parameter 
and velocity ratio parameter on the flow and heat transfer 
characteristics have been studied. The numerical results 
have been obtained using the Keller-box method. The 
existence of multiple solutions were observed and 

η

θ 
(η

)

FIGURE 6. Temperature profile for M = 0.5, s = 3, n = 1, Pr = 0.7 
and different values of ε

ε = 0, 1, 2

ε = 2, 1.5, 1, 0.6

η

f '
 (η

)

FIGURE 5. Velocity profile for M = 0.5, s = 1 and different values of ε

ε = 0., 0.3, 0.5, 1, 1.5, 2

ε = 0.6, 1, 1.5, 2
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determined for some values of the governing parameters. 
It is found that for the first solution (stable solution), both 
the skin friction coefficient and the local Nusselt number 
increase as the strength of suction increases. Moreover, 
strong suction is necessary for the multiple solutions to 
exist.
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